L'Unité Mixte de Recherche TETIS (AGROPARISTECH - CIRAD - CNRS - INRAE) met en œuvre une approche intégrée de la chaîne de l’information spatiale : acquisition et traitement de données spatialisées, analyse et modélisation spatio-temporelle des systèmes agro-environnementaux et territoriaux, conception et gestion de systèmes d’information, Text and Data Mining, TDM, Big data, conditions de l'utilisation de l’information spatiale par les acteurs territoriaux pour les politiques publiques.
The TETIS Joint Research Unit (AGROPARISTECH - CIRAD - CNRS - INRAE) implements an integrated approach to the spatial information chain : acquisition and processing of spatialized data, analysis and modelling spatio-temporal analysis and modelling of agricultural and territorial systems, design and management of information systems, Text and Data Mining, TDM, Big data, conditions for the use of spatial information by territorial actors for public policies.
Featured Dataverses

In order to use this feature you must have at least one published or linked dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

1 to 10 of 750 Results
18 mars 2025
Girod, Coline; Coquereau, Adrien; Nyawasha W., Rumbidzai; Thanks, Bowha; Jahel, Camille; Leroux, Louise, 2025, "Land Use Maps of Murewha District (Zimbabwe): Temporal Analysis from 2002 to 2023 Using Landsat Data", https://doi.org/10.18167/DVN1/E0BP5I, CIRAD Dataverse, V1
This dataset comprises a series of five land use and land cover (LULC) maps of western Murewha District, Zimbabwe, spanning the years 2002, 2007, 2013, 2018, and 2023. The overall accuracy scores for these maps are 0.93, 0.91, 0.90, 0.90, and 0.90, respectively. These maps were g...
PNG Image - 95,3 KB - MD5: 5065a1faa54ec8cebfe2e9bf9dd465af
Class confusion matrix for the lulc_2002 map
PNG Image - 99,1 KB - MD5: 8254be459d4cab0825512ec539a03666
Class confusion matrix for the lulc_2007 map
PNG Image - 98,5 KB - MD5: 578135123d9bfd41df0cc8e5f6cc2031
Class confusion matrix for the lulc_2013 map
PNG Image - 96,3 KB - MD5: e6059fa0b0eb9bfc18d39ccd69eecb37
Class confusion matrix for the lulc_2018 map
Comma Separated Values - 807 B - MD5: 609ab66380187831ea87d005b249f4b5
detailed legend for the lulc classes with codes, classes names, description and color codes for visualization
Unknown - 10,2 KB - MD5: 63f55f273c7d8141e770fe7615637ffc
lulc maps legend style in .qml format for Qgis
TIFF Image - 11,9 MB - MD5: a85c586c871199a056bad2bd31351fe4
Murehwa LULC map 2002 using Landsat Data
TIFF Image - 11,9 MB - MD5: 8bcacf3540051dfc22601062e5964970
Murehwa LULC map 2007 using Landsat Data
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.