Eco&Sols est une unité mixte de recherche de 70 permanents associant l’INRA, l’IRD, Montpellier SupAgro et le Cirad.
Les travaux conduits à Eco&Sols ont pour objectif d’améliorer la compréhension du rôle des organismes du sol et des plantes, ainsi que des interactions entre eux et avec leur milieu, dans les cycles biogéochimiques - cycles C, N et P principalement- au sein des sols et des agro-écosystèmes. Les cycles biogéochimiques du carbone (C) et des nutriments (N et P) sont principalement étudiés dans les agrosystèmes méditerranéens et tropicaux. Les différents composants du sol (particules d’argiles, agrégats, pores…), de la plante (racines, tiges, feuilles, fruits) et l’atmosphère sont étudiés dans ces cycles. La nature des déterminants biotiques et abiotiques des flux de C et de nutriments est étudiée dans des contextes agronomiques variés soumis aux changements climatiques et d’usage des terres.

Eco&Sols is a Joint Research Unit with 70 permanent staff from INRA, IRD, Montpellier SupAgro and CIRAD.
The research undertaken by Eco&Sols sets out to improve the understanding of the role of soil organisms and plants and the interactions between them and their environment in biogeochemical cycles - mainly C, N and P cycles - within soils and agroecosystems. The biogeochemical cycles of carbon (C) and nutrients (N and P) are studied mainly in Mediterranean and tropical agrosystems, in particular the roles of the various components of the soils (clay particles, aggregates, pores, etc), the plants (roots, stems, leaves and fruits) and the atmosphere. The nature of the biotic and abiotic determinants of the C and nutrient flows is studied in a range of agronomic situations taking account of changing land uses and global climate change.
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

1 to 10 of 30 Results
9 janv. 2023
le Maire, Guerric, 2023, "Code for computing Leaf Size, Shape and Symptoms traits from scans", https://doi.org/10.18167/DVN1/PYAXSS, CIRAD Dataverse, V1
This dataset includes the code and example files used on datasets of Eucalyptus sp. leaf scans to compute leaf size (area, length, etc.), shapes, colour, and percentage of symptoms caused by potassium deficiency. The results were used in the following article: Cornut, I., Delpier...
JPEG Image - 93,5 KB - MD5: bbcf660e1a2f47a10e5ebb731aa07a7f
Result example
JPEG Image - 87,1 KB - MD5: 23ef2902def36a84fbcbf751ee6773a8
Result example
JPEG Image - 78,9 KB - MD5: dbd9f01ccfb61dbf523dd9508d6b92fe
Result example
JPEG Image - 253,7 KB - MD5: baa38cf7d1dfba1948762153468c4ee4
Result example
JPEG Image - 360,6 KB - MD5: a3a9d31eb4b959dd9eeb080b34f11873
Result example
JPEG Image - 380,5 KB - MD5: 19ba226f355845df34088c27df036c32
Scan example
Plain Text - 507 B - MD5: 04fd2130b4f07a5797090a192742b1ec
Result example
JPEG Image - 101,2 KB - MD5: a81ff127425521387cc907ffd00674af
Result example
JPEG Image - 85,5 KB - MD5: 5589f59fca52078eaf3625d679646f2a
Result example
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.