L’UMR CBGP – Centre de Biologie pour la Gestion des Populations – a pour vocation de comprendre les mécanismes qui régissent l’évolution de populations d'organismes importants pour l’agronomie, les forêts, la santé humaine ou la conservation de la biodiversité. Les recherches portent sur des modèles biologiques et sont développées selon six axes : origine et caractérisation de la biodiversité ; adaptation des phytophages, de leurs ennemis naturels et de leurs symbiontes ; écologie et évolution des zoonoses ; biologie, écologie et évolution des espèces envahissantes ; génomique statistique et évolutive des populations ; approches moléculaires et bioinformatiques haut débit. Nos tutelles sont l'INRAE, le CIRAD, l'IRD et l'Institut Agro-Montpellier.

UMR CBGP – Centre de Biologie pour la Gestion des Populations – aims to understand the mechanisms that govern populations of organisms that are important to agriculture, forest, human health and biodiversity conservation. Studies concern biological models and follow six lines of research: origin and characterization of biodiversity; adaptation of plant eaters, their natural enemies and symbionts; ecology and evolution of zoonoses; biology, ecology and evolution of invasive species; statistical and evolutionary population genomics; and high-throughput molecular and bioinformatics techniques. Our supervising bodies are INRAE, CIRAD, IRD and Institut Agro-Montpellier.
Featured Dataverses

In order to use this feature you must have at least one published or linked dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

41 to 50 of 205 Results
Shell Script - 2,8 KB - MD5: 37287543aadbccaabf59ff4cdc6dd0a1
R Syntax - 10,8 KB - MD5: 8b717859803ba0b976c68c1b912205a2
this is the leaflet scirpt called in step 9 to generate the html interface and update
R Syntax - 1,7 KB - MD5: f9d4b7ba9a4f2a856e6da1b6cfd4126e
R Syntax - 1,9 KB - MD5: 2c4de26e6390035ba400ee99865b83e5
Shell Script - 2,5 KB - MD5: 24d069561a43dde07d9ad7e95be66e0f
Shell Script - 2,6 KB - MD5: 5f89a3e05b761004c86c825cc3186c0a
execute this to create the leaflet interface and visualize the forecasting maps in a html format. Everything in the mppcpro-main folder is necessary to run this final step
Shell Script - 2,6 KB - MD5: 912793b7438250d392550cd6839613ac
Markdown Text - 7,0 KB - MD5: 25e6a3c3735bb40b25f33de47caeb4c2
R Syntax - 3,1 KB - MD5: 6dd2cceb9026301299e02f9de36552e7
Python Source Code - 5,2 KB - MD5: 6c6ffee49c210e67ad6b216bb755c8b4
main script to launch the forecast calling many functions saved in Python scripts such as tools.py (in which the R forecast function is also called). This script also import from teh cfg folder the best trained model for the corresponding forecast horizon along with the satellite...
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.