L’UMR CBGP – Centre de Biologie pour la Gestion des Populations – a pour vocation de comprendre les mécanismes qui régissent l’évolution de populations d'organismes importants pour l’agronomie, les forêts, la santé humaine ou la conservation de la biodiversité. Les recherches portent sur des modèles biologiques et sont développées selon six axes : origine et caractérisation de la biodiversité ; adaptation des phytophages, de leurs ennemis naturels et de leurs symbiontes ; écologie et évolution des zoonoses ; biologie, écologie et évolution des espèces envahissantes ; génomique statistique et évolutive des populations ; approches moléculaires et bioinformatiques haut débit. Nos tutelles sont l'INRAE, le CIRAD, l'IRD et l'Institut Agro-Montpellier.

UMR CBGP – Centre de Biologie pour la Gestion des Populations – aims to understand the mechanisms that govern populations of organisms that are important to agriculture, forest, human health and biodiversity conservation. Studies concern biological models and follow six lines of research: origin and characterization of biodiversity; adaptation of plant eaters, their natural enemies and symbionts; ecology and evolution of zoonoses; biology, ecology and evolution of invasive species; statistical and evolutionary population genomics; and high-throughput molecular and bioinformatics techniques. Our supervising bodies are INRAE, CIRAD, IRD and Institut Agro-Montpellier.
Featured Dataverses

In order to use this feature you must have at least one published or linked dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

31 to 40 of 205 Results
Unknown - 28 B - MD5: 2d2776841d6164413357f7f227b722a7
Python Source Code - 1,9 KB - MD5: 9d7caeb28c7dedb07d7ddc5cf6813eef
Shell Script - 2,3 KB - MD5: 802337119f3badd6c1cedde5e8cf658a
Plain Text - 2,4 KB - MD5: aab12027b5ced1530cb5f38b91cf3b5d
Shell Script - 2,2 KB - MD5: 879a832f95c53009efbaa8fe47230b24
Shell Script - 3,1 KB - MD5: ced0159588e29e48eb47a25a270e41cd
Python Source Code - 9,6 KB - MD5: ede6b72c99b26698a94c7b808fdecb66
Shell Script - 1,9 KB - MD5: dd61754a2590b6886f43b1e944a639d3
The predictors decades corresponding to the forecasting period are automatically updated using the cron command line utility on a linux server (forecast_chron.sh).
R Syntax - 2,3 KB - MD5: 964bc7273d0639a8077b49621a0a3693
Shell Script - 2,0 KB - MD5: d9b5e68ebb2b07b5281cd02eb8a7e509
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.